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Republic of China 
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Abstract. The extended Kauffman state model is presented by introducing the annihilation 
diagrams. This new state model enables us to establish a connection between the Akutsu- 
Wadati type polynomials and the group approach of Witten. 

1. Introduction 

In an elegant survey by Kauffman [ 11 the knot diagram theory was discussed through 
the state models, i.e. bracket polynomial, surface state and S-matrix model [2]. The 
diagrammatic version has been shown to be a powerful method of constructing the 
polynomials, including the Jones polynomial, which are invariant under the 
Reidemeister moves of type I, I1 and 111. Among them the S-matrix state model which 
specifies elements of a representation of the braid group is a direct model and is closely 
related to the S-matrix with infinite rapidity in physics. 

In this paper we shall present an extended S-matrix model which leads to the 
Akutsu-Wadati (AW) type polynomials and show that this approach provides a 
graphical description of the projection to a plane of a knot (link) in 3-space for the 
polynomial theory of Witten [3,4]. 

Let us begin with the Temperley-Lieb representation of the braid group [4,5] 

T (  U )  = U 1 E,, X E,, 4- 1 E,b X Eba - (U - U-’) 1 E,, X Ebb (1.1) 
o # b  o < b  

where U is a parameter and E signifies the unit matrix. In (1.1) the indices a, b, c and 
d label the spin. Following Kauffman, (1.1) can be represented by the diagrammatic 
expansion 

where the notation is the same as that in [ l ,  21. 
Obviously T:: introduced here represents an element of the S-matrix with the 

infinite rapidity, this is because the S-matrix is related to the R-matrix through transfer 
matrix theory, but the limit of the S-matrix at infinite rapidity satisfies the Yang-Baxter 
equations [6,7]. Henceforward we denote by T the S-matrix with infinite rapidity, 
i.e. a representation of the braid group (BGR) .  

0305-4470/90/O50619 + 21$03.50 @ 1990 IOP Publishing Ltd 619 
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It is known that in order to consider the topological properties the Reidemeister 
moves should be satisfied. The type I1 is the unitarity condition 

and I11 is the Yang-Baxter equations 

(1.3) 

(1.4) 

For a given S-matrix it is easy to construct a representation of the braid group by 

B, = I"' x I ' 2 )  . , . x s x I ( , + * '  x . . . x I (n ) .  ( 1 . 5 )  

Equations (1 .3)  and (1.4) provide the stringent constraints in constructing an 
S-matrix. The type I invariance will be considered later in this paper. 

There may be other constraints to the S-matrix; for example, if the S-matrix is 
reduced from the vertex models the label conservations (CTP) should be respected for 
any S-matrix element Tzj ,  such as (for six-vertex models) 

a + b = c + d  (1.6) 

and others [7 ,8] .  

diagonal form [7,8]: 
Under such a consideration, in general, the S-matrix has the following block 

AN-,  
AN 

Ah-I 

where A, is an m x m matrix. 
For given N = 2s + 1 ,  where 

the diagrammatic expansions in 
s is spin, we can in principle calculate T in terms of 
the standard way by generalising (1.2) and giving the 

topological invariant polynomials. In doing this (1.3) and (1.4) should be satisfied, 
whereas the cross-channel unitarity ('trace cross-channel unitarity', in fact) will play 
a role in establishing polynomials (see below). 

The advantage of this approach is that it gives a systematic method for constructing 
the braid group, skein relations and the corresponding polynomials in terms of the 
extended diagrammatic state model. For a given diagrammatic expansion of the 
S-matrix a link polynomial can be calculated by [ l ,  21 

[ K  I /  [OI (1.8) 
where W ( K )  is the writhe of an oriented diagram K and [K] is a polynomial with 
regular isotopy invariance 

(1.9) 

pk = & - w c K )  

[ K ]  = 1 [ K  1 ~ ] t ~ ~ ~ ~ ~ .  
s 
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In (1.9) [ K  I SI denotes a product of local contributions from the vertices of the 
diagrams. For a state S, llSll is defined as 

1) SI1 = rot( I )  label( I )  
leComp(S) 

(1.10) 

where comp(S) denotes the components of S,  label(Z) is the spin assigned to 1 and 
rot(1) = 1 or -1 according to whether the loop is anticlockwise or clockwise. [O] in 
(1.8) represents unknotted [ K ] .  In (1.8) a‘ means 

(1.11) 

and t will be determined by cross-channel unitarity [ 2 ] .  Since the ‘adjustment factor’ 
tiis” appears only in a trace (summation over all the states), it is enough to use ‘trace 
cross-channel unitarity’ to determine the relationship between t in (1.9) and the 
parameter U in a representation of the braid group, for example, Tzj in (1.2) [2,7]. 

The trace cross-channel unitarity can be expressed by 

(1.12) 

which leads to algebraic equations determining t = t ( u ) .  It is easy to see that (1.12) 
is the only possibility for realising the cross-channel unitarity in a trace [2]. 

For irreducible representations of SL2, AW have discovered the new polynomials 
and skein relations based on the six-vertex models [7]. In their three examples the 
reduction relations (skein relations) are ‘higher’ than Jones’ in the power of the braid 
group generator for spin 4, 1 and i ,  or equivalently, N = n + 1 = 2s  + 1 = 2, 3 and 4. 

Recently, Witten gave a natural framework for understanding the Jones polynomial 
of knot theory in ( 2  + 1)-dimensional quantum Yang-Mills theory. For the fundamental 
representations of SU( N )  the conformal weights of a primary conformal field were 
introduced to calculate the eigenvalues of the matrix B in the convention of Moore 
and Seiberg [SI. 

In this paper we shall first extend Kauffman’s diagrammatic scheme to calculate 
new polynomials and new skein relations including AW results. As an illustrative 
example, the calculations for N = 3  will be made with the help of the extended 
diagrammatic technique. In the same way the calculations are also made for N = 4 
and 5 .  

We shall extend Witten’s discussions to give a general scheme for calculating AW 

type polynomials for any spin. 
The above coincidence suggests that the diagrammatic scheme depends on the 

group. If we are able to extend our approach to the groups B,, C ,  and D,, an infinite 
number of new reduction relations, therefore an infinite number of polynomials, can 
be expected. The answer is yes. We have developed the idea of this paper to give the 
relevent calculations for fundamental representations of B,, C, and D,. The calcula- 
tions will be published elsewhere. Thus this paper, in a sense, is an introduction to a 
great number of new reduction relations and polynomials far beyond those of Jones, 
Kauffman and AW, although the Jones polynomial is the ‘co-starting point’. 
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2. The extended diagrammatic calculations for spin 1, and 2 

In this section we calculate the polynomials and skein relations for spin 1 and ( N  = 3 
and 4, respectively) in terms of the generalised diagrammatic technique. Follow 
Kauffman [ l ,  21, the S-matrix can be defined as 

2.1. New polynomial for N = 3 

Considering zero elements in the upper-left triangle of the submatrices A,,, in (1.7), 
we introduce 

0 0  a b  

b (2.2) 

a b  

a a a -2 2 0 0  c d  a b  

0 0  2 a b  b a b  

a a a b  b a  ‘ 2  -2 0 0 ’  

where the spin indices a, b, c and d E ( -2 ,0,2)  and 

i.e. in (2.1) the ‘annihilation terms’ are introduced to extend the original diagrams with 
only the ‘scattering terms’. Now we require (2.2) and (2.3) to satisfy (1.3), which gives 

u l u ;  = u2u;=pIp;  =p2p;= 1 

w,p;+p,w;+ v l v ;  = o  
w,p;  +p1 w’l = 0 

(2.5) 
u2v‘l + V I P ;  = 0. 

The solution reads 

U ;  = U;’ U; = U;’ P ;  = P;‘ PS = P;’ 

v’l= - - V I / U 2 P 2  
w ;  = -w , /p :  w;=(v : -u2w2) /p : .  (2.6) 

By using the symbolic expansions of the extended state model (2.2), the YB equations 
(1.4) can be split into states in (2.2) and (2.3) that provide the algebraic equations for 
constraining the parameters appearing in (2.2) and (2.3). 
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For a = b = d = c ,  c = f ,  a # c  we have 

For a = d ,  b = e ,  c=J; a # b # c  we have 

For a = b = O ,  c = 2  we have 

For a = c = O ,  b = - 2  we have 

The other equations do not give new results. The diagrams give the equations as follows: 

u:w, = u,w;+ w,p: 
u:w2= u,w:+ w2p:+wlul  2 

u:w2+ u2u1 = u2w:+ w,p: 

ulP2=P: P:' U 2  

w,p:+ u2u:= w,p: (2.7) 
2 U1 w2 + U 2  w1 = U1 w1 

which has the solution set 

P2 = U ; ' P :  U 2  = -P1 w1= U1 - u;'p: 

w2 = u ; l w l ( u I  - u2) u:= U;'w,(p:-p:). 
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The trace cross-channel unitarity in this case is 

i.e. 

(2.9) 

' w , t 2 + w , w ; = 0 .  (2.10) 

It follows from ( 2 . 6 ) ,  (2.8) and (2.10) that for spin set ( - n ,  - n  -2 , .  . . , n )  we have (in 
this example N = 3) 

p - - t - 2  w - t 2 -  t - 2  PI = -1 u2= 1 2 -  1 -  

= -t3(1- t-4) 

U1 = t 2  

w - t 2  - 1 - t - 2 +  t - 4  

W I  1 -  - t - 2  - t 2  

U ;  = t - 2  u ; =  1 p: = -1 p; = t 2 .  

VI = t (  1 - t-4) 2 -  
(2.11) w; = t 4  - t 2  - 1 - t - 2  

The skein relation can be expressed by 
0 -2 

a = 2,-2 

0 2  -2 0 
-2 0 -2 2 

w:p; x+ w ; p ;  x + p ; ' i - ; - i + p ; ; i c ; i + ( u ; +  w ; ) u ;  

0 0 - 2  2 0 0 - 2  2 
\/' +",' ) +P2Vl I .(d' # Q +';( ), 

x(;t., 2 - 2 0  #"Q 0 
2 4 *o 

Using (2.12) the skein relation 

(2.12) 

(2.13) 

can be solved; we have 

a = - ( t 4  - t 2 +  t - 2 )  p = t4  y = t 6 -  t 2 +  1 
(2.14) 

There is the similar skein relation for T with t + t-' in (2.14). Introducing t 2  = q and 
g = qT-', (2.14) can be written as 

(2.15) 

'Ip3 = ( t4- t 2 +  t - 2 )  T - 2  + ( t 6 -  t 2  + 1) 'I-' - f4. 

g3 = (93- q 2 +  l ) g 2 +  ( q 5 -  q 3 +  q 2 ) g  - q 5 .  

This is the AW reduction relation for spin = 1 [7,8]. 
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We next calculate the corresponding polynomial by (1.8). Because 

c.3 = w 2 t 4 + 2 u ,  + u 2 + 2 w , t 2  = t 4 ( t 2 +  1 + t - 2 )  = t 4 0  = 60 
where the single loop is determined by (1.9) with the unknotted diagram 

(2.16) 

[ 0 ] = t " + t " - 2 + . . . + t "  

P2+ = q( 1 - q2 + q 3 )  P+ + q 2 (  9 2 -  4 3 +  q 5 )  Po - q8P- 

it follows that 
(2.17) 

(2.18) 

+.& , P+ = P c , P-  = P y , Po = P d  [7]. The representation of where P2+ = P 
the braid group is easy to construct by using (1.5). 

Equation (2.18) was derived by AW [7]. Checking the above process step by step, 
it is easy to find that the Kauffman state expression for the polynomial (1.8) is identical 
to the Markov trace in AW [7], if the extended state model (including the annihilation 
terms) is considered. 

&\ Y -.) 

2.2. The case for N = 4  

With the spin indices 1 E (-3, -1, 1,3) the extended state expansion can be written in 
the form 

c d  o b  

-3 3 1 - I  -3 3 - I  

and (2.19) 

-1  1 3 -3 - 1  3 \,' +'\,:' ) + .;( ;;< +.:q 
+U;(;/\* , P a p * *  

3 -3 -1  1 -3 1 - I  

Follow the same strategy as N = 3, equations (1.3), (1.4) and (1.12) must be imposed 
on (2.19) which leads, after lengthy calculations, to 
U, = t 2  

w3 = (1 - tc4)(1 + t r 2 )  
p - - t - '  

V I  = ( 1 + t - ' ) [  ( 1 - t -2)(  1 - t - 6 ) ]  

V 2 = t - 2 ( 1 - t - 6 )  

U ;  = t - 2  

w; = -t6(1 - t-4)(1 - t - 2 )  

p ;  = - t  p ; =  t 4  p i  = - t 3  p & = - t 7  

u ; = - t ( l - t - 6 )  

U2  = t - 2  w 1  = t 2 (  1 - t - 6 )  w2 = t 2 (  1 - t - 4 ) (  1 - t c 6 )  

w4 = t 2 (  1 - t c 2 ) (  1 - t - ' ) (  1 - t P )  

p - - t - 7  
4 -  

p - - t - 3  p2 = tC4 3 -  

u3 = - t ( i  - t-4)(1 - t - 6 )  

1 -  

(2.20) 
U; = t 2  w ;  = - t4 (  1 - t - 6 )  W; = r s (  - tc4)( 1 - t + )  

wk = - t ' O (  1 - t-')( 1 - tc4)(  1 - r c 2 )  

~ ; = - t ~ ( l + t - ~ ) [ ( 1 - t ~ ~ ) ( l - t - ~ ) ] ~ / ~  

= - t 9 (  1 - t - 6 ) (  1 - t -4 )  
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where the trace cross-channel unitarity identity 
u ; ' w , t - ' + u ; ' w 2 t + u ; ~ W 4 t ~ + U ; ' W 3 f + U ; ' W 2 f ~ + U ; ' W l f 3 + U 2 W j t - 3  

+ ~ ~ w ~ t - ~ + ~ ~ ~ ; t - ~ + ~ ~ ~ ~ t - ' + u ~ w ~ t - ' + u ~ w ~ t  

+ w 3 w ' , t - ' + w 2 w j t + w , w ~ t - ' + w l w ; t = 0  (2.21) 

has been used. 

relation for T has the form 
It can be checked directly that (2.20) satisfies (1.3), (1.4) and (2.21). The skein 

T-4= (4- l -  q 2 +  q4- q 5 ) T - 3 +  q(1- q 2 +  q 3 +  q 5  - q6+ 4') T-2 

+ q5( -1 + - q3  + q6)  T-' - q ' O  

g4=(1--3+q5-q6)g3 

(2.22) 
or 

+ q 3 ( 1  - q 2 +  q 3 +  q 5  - q6+  q8)g2+ q 8 ( - 1  + - q 3 +  q6)g - q14. (2.23) 
Considering 

m =2Ul+2u2+2Wlt2+2W2t4+ W 3 t 2 +  W 4 t 6  
(2.24) 

= t 5 ( t 3 +  t +  t - I +  t - 3 )  = t 5 0  

and 
P3++aP2++PP++ yP-=aPo  

the coefficients in (2.25) can be determined with the help of (2.22) 

(2.25) 

and the polynomial has the form 

P3+ = q3'2( 1 - q 3 +  q 5 -  q6)P2+ + q6( 1 - q2+  q3 + q5 - q6+ q8)P+ 

+ q25'2(--1 + q - 43' q6)Po- q20P-, (2.266) 
This is the result of AW [7,10]. 

Now let us use the extended state model to give a representation, skein relation 
and polynomial for N = 5  that have not yet been derived by AW. Adding all the 
annihilation diagrams to the original diagram we have, for N = 5, 

4 c h  a + b  
a b  

c d  b c a  

0 2 - 2  4 -2  0 -4 2 

-2 -4 4 

-4 4 2 - 2  - 2  2 0 - 4 4 0  0 

-2 2 -4 
+ U7 ( ;ha \ /  + '4) ,ha 

-4 4 -2 2 

(2.27) 
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0 4 -4 -2  2 4 -4 0 ;,(*+;,?) 0 2  +U( )<*+;x*) 

4 -4  -2 2 2 - 2 0  0 -4 0 0 

2 -2 4 
+U;(;/\* \,/ +';?) , , 

4 -4 2 -2 

(2.28) 

Substituting (2.27) and (2.28) into (1.4) and (1.12) and making use of the diagrammatic 
symbol expansion, rather than the detail of the tedious calculations, we give the 
equations that must be satisfied by the parameters appearing in (2.27) and (2.28), namely 

(2.30) 
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Combining (2.30) with (2.29), we derive the solution set 
U ;  = t - 2  U; = t 4  U; = t6 W ;  = -t6(1- t - ' )  

W; = t"(1- t-')(1- t- ')  

~ k = - r ~ ~ ( l - t - ~ ) ( 1 - r - ~ ) ( l - r - ~ )  W ;  = 1 + r - 2 ) (  1 - t - 6 ) 2  

w;,= t18(i - t-2)(i - t-")(1 - t - ' ) ( 1 -  t c 8 )  

U ;  = - tg[ (1 + t - 2 ) (  1 - t P ) (  1 - t -  ) ]  

U;= -t"[(1+ tc2)(1 - tP)(1- t ~ ' ) ] ' / ~  

~;=-r'~(l+t-~)(l-t-~) 

p ;  = - i 2  p ; =  t 6 p ;  = - t 6  p ;  = - t ' O  p ;  = t 8  p ;  = 
(2.31) 

8 1 / 2  

U; = ti4(1 - tP)[(i + t-2)(i - t-')(i - t ~ ' ) ] ' / ~  = - t l S (  1 - t - 8 )  

~;=-t'~(1+t-~)(1-r-~) 

U: = - t17(  1 - tc4)( 1 - t P ) (  1 - t- ')) .  
Here we give the trace cross-channel unitarity equation for checking purposes: 
u1(w;t2+ w;+ w;t-2+ ~;,r-~)+ u(wjtc4+ w j +  w;tc4+ w i t p 2 )  

U;, = t16( 1 - t-')( 1 - t c 8 )  

+ u , ( ~ ; t - ~ + ~ j r - ~ ) + ~ ; ( ~ ~ r - ~ + w ~ +  w4t2+ w6t4 )  

+ u;(w1t4+ w3+ w4t4+ w 5 t 2 )  + U;( w2t4+ w 3 t 2 )  

+ w1 w i t 2 +  w,w;t-' + w1 w&tc2+ w4w; t2+  w1 w ;  

+ w5w;+w2w;t2+ w3w;t-2+w2w;+ w,w;=o. (2.32) 
Repeating the same procedure as before, the skein relation is given by 
~ 5 '  t2(1 - t - 8 +  t-14- t - 1 8 +  t - 2 0 ) ~ 4 +  t-4(1 - t - 6 +  t -10-  t - 1 2 +  t -14- t - 1 8  

+ t - 2 0 + t - 2 4 -  t - 2 6 + r - 3 0 ) ~ 3 ~ t 1 6 ( ~ ~ f - 4 + f - 6 + t - 1 0 ~ f - 1 2 + f - 1 6 ~ t - 1 8  

+ t - 2 0 - t - 2 4 + f - 3 0 ) ~ 2 ~ f - 3 2 ( ~ ~ f - 2 + f - 6 ~ f - 1 2 + f f - 2 0 ) ~ + f - 5 0  (2.33) 

( g  - q'O)(g - q9)(g - q 7 ) ( g  + q4Xg - 1) = 0. 

or for g = qT-' and q = t2 

(2.34) 
The corresponding polynomial has the form 

P 4 + = q 2 ( 1 - q 4 + q 7 - q 9 + q ' 0 ) P 3 ,  

+ @(1- 43+  45- q6+  4 7 -  q9+ q ' O +  q ' 2 -  q ' 3 +  q15)P2+ 

- q 1 7 ( 1 - q 2 + q 3 + q 5 - q 6 + q 8 - q 9 + q 1 0 - q 1 2 + q 1 5 ) P +  

+ q40P- - q y 1 -  q + 4 3 -  q 6 +  q'0)Po (2.35) 
where P4+ represents the polynomial with four crossings. After calculation, some 
elementary link polynomials for spin 2 can be given: 

Kauff man extended 
.-. 

q 2 (  1 + q 2 +  q 3 + 4 4 +  45) q Z (  1 + q'+ q ' O +  q ' 5 +  4 2 0 )  

q4(1 + q 5 -  q9+q10-q13-q14+ q15-q18 @ q4(1 + q2  - q 6 )  
- q 19 + 2 q2O - q 2 4  + 2q" - q28 - q29 + 4 3 0 )  

and q + 4-l for the opposite orientation. 
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As was discussed above, if the extended state model is used then the skein relations 
and polynomials, in principle, can be calculated in a systematic way. Of course, the 
higher the spin, the more complicated the calculation. However, in the next section 
we shall give a general solution for constructing AW polynomials for arbitrary spin 
systems. 

It is worth emphasising that our approach can never be regarded as a reinterpretation 
of AW new polynomials. It possesses much more power than this. In terms of this 
systematic scheme one is able to find a lot of new representations of the braid group 
and new skein relations. For instance, this aim has been arrived for the fundamental 
representations of the groups B,, C,D, and G 2 ,  and the six-dimensional representation 
of A*, the eight-dimensional representation of B3 and so on [ll]. 

3. Group approach and AW type polynomials 

In this section we shall discuss the relationship between the Witten theory and AW 

type polynomials. 
The physical understanding of knot polynomials was recently initiated by Witten 

[3,9]. The theory is related to the decomposition of R x R where R is the fundamental 
representation of the group SU(N)  

s 

R x R = C  Ei. 
i = l  

In [3] Witten built up a general sketch of the method for intepreting link polynomials 
in terms of physical field theory. On an oriented three-dimensional manifold M with 
a compact simple group G ,  the integral of Chern-Simons 3-form on M is chosen to 
be the action 

Z = L=& IM Tr(A A dA+fA A A A A). (3.1) 

The Feynman path integral of a given Wilson line is called the partition function of 
M with the given link L 

Z(S3; W(Cl)  . . .  W ( C , ) ) =  (3.2) 

Consider, as in figure 1, a 3-manifold M which is the connected sum of two pieces, 
ML and MR, joined along a 2-sphere S2. There may be links in ML or MR, but, if so, 
they are assumed not to penetrate the joining sphere S2. If for every 3-manifold X,  
we denote the partition function by Z ( X ) ,  then we observe that 

(3.3) 
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where x E M, y E S2,  x1 E M I ,  x2 E M 2 .  The identity (see figure 1) M + S 3  = MI + M2 
has been used: Z ( S 3 )  denotes the partition function of s3 with no links. The formula 
(3.3) can be rewritten as 

(3.4) 

Figure 1. A 3-manifold M which is the connected sum of two pieces M ,  and M,, joined 
along a 2-sphere S2. Similarly, a 3-sphere S3 can be cut along its ‘equator’, a S2 sphere, 
being two 3-balls B ,  and B,.  Cutting both M and S 3  as indicated above, assuming there 
are no link lines penetrating the 2-sphere S2, the pieces can be rearranged into M ,  and 
M,, i.e. M -+ S’ = M ,  f M2 , 

If we introduce the normalised expectation value of a link L, defined by P(L) = 
Z ( S 3 ;  L ) / Z ( S 3 ) t  then (3.4) becomes 

WCI, C2) = P(~I)P(CZ) (3.5) 

for unknotted (unlinked) circles C,  and C, .  For example 

0 1 =  P [ ~ I P [ O I .  (3 .6)  
Equation (3.5) can be generalised by cutting the manifold to separate the circles and 
repeatedly using (3.5) to the case of arbitrary collection of unknotted, unlinked Wilson 
lines on S3. 

If there are link lines in M (means S 3 )  penetrating through S2, one will have a 
Riemann sphere (the joining sphere S 2 )  with marked points [3]. The Feynman path 
integral on MR (with boundary S 2 )  determines a vector I+!I in Hilbert space X. The 
path integral on M L  (the boundary is the same but it has opposite orientation) 
determines a vector x in 2- (canonically the dual of 2). It is easy to understand that 
the partition function on the connected sum M (perhaps with link line I )  is a natural 

t M is taken as S3. 
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pairing of the vectors x, +, i.e.$ 

From the work of Verlinde [ 111, the dimension of physical Hilbert space for an 
arbitrary collection of marked points on S2 can be determined from the knowledge of 
NUk. We are more interested in the case with four marked points (external charges) 
on the Riemann sphere S 2 .  Consider that there are four charges (marked points p1 , p 2 ,  
p 3 ,  p4) on S 2  with representation R, R and l? of G. The physical Hilbert space (at 
large k) is s-dimensional if the direct product of the irreducible representation R 
decomposes to s distinct irreducible representations of G 

n 

R @ R = C @ E i .  
i = l  

(3.8) 

We conventionally denote the irreducible representation whose highest weight is the 
twice of that of R by El .  Certainly for any n + 1 vectors in the n-dimensional Hilbert 
space, there would be a linear relation 

c u + + c u l + l + *  * *+an+,=O (3.9) 

Figure 2. (a )  M is a S in which curve C is embedded, if it were sketched as shown here, 
the boundary of that ‘ball’ would be considered as a single point. Cutting M around the 
intersection of C and a 2-sphere s, we will get two balls embedded with link lines (see ( 6 ) ) .  
( b )  M ,  and MR are an ‘interior’ piece and an ‘exterior’ piece respectively. The boundary 
of the figure should not be considered as a single point. 

As shown in figure 2 ( a ) ,  we cut into two pieces the 3-manifold by the two- 
dimensional Riemann sphere S2  which intersects with the link line at points ( p ,  , p 2 )  
and ( P I ,  P2). The exterior piece is denoted by ML; the interior piece is denoted by 

$ Normalised partition function. 
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Figure 3. Reduction relations and the surgery for three eigenvalues. For more eigenvalues 
the extensions are obvious. 

MR (see, for example, figure 2 ( b ) ,  more generally see figure 3). The Hilbert spaces 
associated with the boundary of ML and that of MR are X- and 2 respectively. 
Making a deformation such that on the boundary of MR the marked point p1 goes to 
the original position of p 2 ,  and point p 2  goes to the original position of p1 . This 
changes M R  into Mg’. Gluing it to ML, we have another link C’ which is the same as 
C outside of S2  but different inside. This requires studying the Hilbert space which 
arises as the space of conformal blocks for the p ,  , p 2 ,  p 3 ,  p4 four-point correlation 
function on s2. 

In conformal field theory the correlation function satisfies [ 121 

(3.10) 

here k is the centre charge of Kac-Moody algebra. The C, is determined by the group 
G due to .cybcd = C:b [12], where f a b c  is the structure constant of G .  The change 
of configuration under the deformation can be regarded as a result of the half 
monotromy operation. That is, the operator B in [ 9 ] .  The eigenvalues of B are shown 
in [9], they are 

(3.11) hi = *exp( i 77(2AR - AE, )) 



Extended state model and group approach to new polynomials 633 

where the sign + or - corresponds to whether Ei appears symmetrically or antisymmetri- 
cally in RO R ;  A R  or AE,  is the conformal weight of the primary field [ 121 transforming 
as R or Ei. It is given generally in [12] from the Wess-Zumino chiral model by 

Following [3, 7, 91, the characteristic equation of the operator B is 

(3.12) 

(3.13) 

where Ai are eigenvalues of B. The reliability of the multi-eigenvalue extension for 
operator B will be confirmed later. Correspondingly the dependent ( n  + 1) vectors in 
Hilbert space HR associated with boundary MR obey 

(3.14) 

Referring to [3, 9, 121, it is easy to determine A,  for SU(2). Let A R  (AE, )  be the 
conformal weight of the primary conformal field [3, 9, 121 transformed as R(')  ( E , ) ,  
the eigenvalues of B are [13] 

A ,  = i e x p ( i ~ ( 2 A R  -AE,)} (3.15) 

where the sign corresponds to whether E, appears symmetrically or antisymmetrically 
in A, .  In the present situation it depends on the level of E,. For the j representation 
of SU(2) it is very easy to see that A is related to the Casimir corresponding to a 
weight j [12] 

A " ) = j ( j +  l ) / ( k + 2 ) .  (3.16) 

Now let us consider the skein relations and the corresponding polynomials for different 
spins j .  

(i)  j = 1. From (3.14) and (3.15) it follows that 

A R = A ( ' ) = 2 / ( k + 2 )  

AE3 = A(2) = 6/(  k +2)  

AE, = Ah''' = 0 

A l  = q2 A 2  = -9 A, = q-' 

AE2 = A") = 2/ (k+2)  

q=exp(2iT/k+2)  ( B  - q2) (  B + q ) (  B - 4-l) = 0 

which agrees with (2.14) with B = T-lq-'  and q = t. Equation (3.14) becomes 

B3$- q - y q 3 -  q 2 +  l ) P $  - 4-745-  43+ q2)B$+ q 2 $  =o. 
Taking the natural pairing of ,y in HL with (3.14), which implies that M2 is glued with 
M ,  and its diffeomorphism M I ,  M i ,  M", respectively, one gets 

( ~ B ~ $ ) - q - ~ ( q ~ - q ~ +  1)(xB2+)- 4 - 2 ( 4 5 - 4 3 + 4 2 ) ( ~ B $ L ) - 4 2 ( ~ $ ) = 0 .  

Taking account of the correction factor of framing (see [3]) f =  exp(-i2rAR) we have 
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in general 
(3.17) 

The power indices in (3.17) indicate the path of regulation, i.e. the 'auxiliary' lines 
twist the curve in M 3 (  m + 1 )  times. For j = 1 one has f = q-2  the (cubic) skein relation 
(3.11) has the form 

(x+) = Z(L-1) (xB"+'+)  = f""'Z( L+") m = 0, 1,2 ,  . . . . 

Z ( L , 2 ) - q ( q 3 - q 2 +  l )Z(L+' )  - q 2 ( q 5 -  q 3 + q 2 ) z ( L 0 ) + q 8 z ( L - 1 )  =o. 
It coincides exactly with AW for n = 2  or N = 3 .  

(ii) j =$. In the case that HR is four dimensional we have 
A - -q3 I4  A 4  = q - 9 / 4  f =  q - 1 5 / 4  A 2  = q11'4 3 -  

15/4 A l = - q  

Correspondingly 

( B  + q l 5 I 4 ) (  B - q1'l4)( B + q3l4)( B - q - 9 / 4 )  = 0 

which agrees with AW for B = q-9 /4T- ' .  The polynomial can be given by 

Z ( L + , )  + q3l2(q6  - q 5 +  q3 - l )Z(L+2)  - q6(q8 - q 6 +  q 5 +  q3 - q 2 +  l )Z(L+' )  

- q 2 5 / 2  ( q 6 -  q3+ q - 1)Z( Lo) + q 2 0 z ( L - , )  = 0. 

This is the AW polynomial for N = 4. 
(iii) j = 2. 

(3.18) 

(3.19) 
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This is a sixth-power skein relation, which is a new one, i.e. it has not been derived 
by either AW or the extended diagrammatic scheme. We believe that one can obtain 
this relation from a 62 x 62 representation of the braid group. It is interesting to note 
that (3.18) exactly coincides with (2.35) except for the lower spin states. 

The non-trivial nature of the coincidence between Witten's approach and the 
extended diagrammatic calculations is in the framing factor f defined by (3.8). Now 
let us make a general discussion. 

The advantage of Witten's approach is that it enables one to immediately write 
down the eigenvalues which are related to the 1 + 1 CFT. For nA, we have 

n n ( B - A , ) = O  
t = 1  

where 
A ,  = -J-q(c,-l/zcE,) 

and 
q = exp[2ir/(  C, + k)]. 

(3.20) 

(3.21) 

The difference between B and the braid group representation (BGR) is only in a 
normalisation factor. We can thus regard B as the T (BGR) up to a factor. It is very 
easy to construct the skein relations in terms of Witten's approach if the framing factor 
is shown to be universal, since (3.20) and (3.21) are correct for any Lie algebras (see 
[5,14]). In this case, because 

Tn$+ a1 T"-'$+. . .+ T$+ an$ = 0 (3.22) 

where 

and the framing factor f defined by 

(x ,  T"$) =f" 'P(L(m-l))  

with 

f =  exp(-2irAR) 

(3.23) 

(3.24) 

we use x to act on the LHS of (3.22) and consider (3.23) to give the skein relation 

P ( L n ~ , ) + f - ' Q 1 P ( L n ~ , ) + .  . . + f " n - " a n - l P ( L , ) + f  -nQ,P(L-l) =o. (3.25) 

Now let us show that the framing factor f given by (3.23) works for any Lie algebras. 
The basic reason consists in the Markov trace. 

As shown in [7,14], the Markov trace is given by 

@(A) = Tr(AH) (3.26) 
where A represents a braiding block and H is the tensor product of diagonal matrices 
h, namely 

H = h @ h @  . . .  0 h .  

For the Lie algebras (with multiplicity one) Reshetikhin [14] gave the general form 
of h 

(3.27) h = 8 t - 2 ( & W a ) =  8 t - L ( a )  
a b  ob ab 
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where S is the half sum of the simple roots and Wa denotes the weight labelled by 
index a. The point of the Markov trace is that r and 7 are independent of index a where 

(3.28) 

In the AW approach for any characteristic equation (3.22) the skein relation can be 
formed by taking the Markov trace first 

T:; hab = r 2 ( T-I)  :khbb = ?, 
b b 

Tr( T"- 'H)  + a1 Tr( T"-'H) + . . . + a,-, Tr( H )  + a,  Tr( T ' H )  = 0 

then multiplying each term by the corresponding power of the factor ( ? / T )  

gives the result 

P ( L , _ , ) + a " ' ~ , P ( L , - ~ ) + .  . .+~-(1~2)(n-~)an~lP(Lo)+a-'1'2)"a,P(L_l) = O  (3.29) 

It 

where e ( A )  is given in [7] and 

a = 71% (3.30) 
Since the index amax corresponds to the weight W,, we choose the element 

T::la=amax = t - ( W ~ ) 2  (3.31) 

(3.32) 

We thus obtain the relationship between the framing factor f in Witten's approach 
and a in the AW Markov trace based on the general discussions of Reshetikhin [3,7,14]: 

&=f-' 7 = 7-1, (3.33) 
The equality 

q = t  (3.34) 
where t relates to the unknotted contribution through 

is due to the trace cross-channel unitarity. The verification is as follows. 
There are two possibilities for closure of the graph 

One of them is trivial 

The other provides the trace cross-channel unitarity 

(3.35) 
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namely, the trace cross-channel unitarity [ 1,2, 101 is automatically satisfied provided 
(3.34) holds. 

For many cases the resultant decomposition of R x R contains such components 
as CE, = 0 (one-dimensional representation). Under such a case the 'first' element of 
T can be normalised to be 1, i.e. 

T::lo=amax = 1. 

By virtue of the form of (3.22) the above discussions are still valid. We thus conclude 
that Witten's approach can be extended to the cases of Lie algebras which include the 
spin models. 

Witten's approach provides a general scheme for constructing link polynomials 
based on the Casimirs ( A R  and AE,)  of classical Lie algebras. If we restrict ourselves 
only to the link polynomials no BGR is needed. Conversely, by virtue of [3,14], we 
can regard the traces of the submatrices and the Markov trace for T as the constraint 
conditions on the parameters in T. In this way the calculations to derive the BGR can 
be simplified. In the next section we take the case of spin 3 as an example to compute 
the associated BGR with the simplification. It is worth noting that cubic or higher 
powered reduction relations can no longer be determined by only the reduction relation 
as in the case of Jones (see (3.6) and [3, 141). However, in these cases (3.35) is the 
universal expression for [O].  

4. The direct calculations for the case of spin 3 

The Casimir eigenvalues for SU(2) are simply j ( j  + 1) so that the eigenvalues of BGR 

under the case are 

1 - f 5  t9  - f ' 2  f '" - f ' 5  (4.1) 

where 

f = exp(2ri / (k+2)) .  

The general considerations lead to the block-diagonal form for the BGR T [7,8] 

T =  ( A ' 5 ' , .  . . , A'", A''', A,"),. . ., A'5 ) )  (4.2) 

where 



A ( ' ) =  

A(0) = 

where the parameters ql, . . . , 4 1 3 ,  p l , .  . . , p 3  will be determined in the following. 
( i )  By taking the trace of A") and using the eigenvalues 1,. . . , tl' we have 

p1 = t 2 +  t 3 +  t4- t5 - 2 t 6 - 2 t 7  - t 8 +  t 9+  t l O +  t".  

(ii) By taking the Markov trace we get 

( 1  - t3) ( i - t4) ( i  - t 5 ) ( t - 5 / 2 ) + p l r - 3 / 2 + p 2 r - 1 / 2 + t 6 t 1 / 2 =  

p 2 =  t4+ t5+t6 - r7 - t8 - t9 .  

(iii) With (4.1) the trace of A''' leads to 

p 3  = t + t 2  + 2 t S +  3 t 9 +  t" - t4 - 3 t 5  - 2t6 - t" - t I 3 .  

The off-diagonal parameters q should be determined in terms of the YBE, which can 
be performed by means of the extended YB state model. The standard device is 
described in [lo]. The results are as follows: 

( q 1 ) 2 =  t 1 4 - t 1 0 - 2 t 9 - t 8 + t 1 3 + r 5 + t 4  

( 4 2 ) 2 = ( 1 - 1 5 ) ( t 1 0 - t 1 1 ) + t 4 q :  

( 43)2  = ( 1  - t5)2( 1 - t 4 ) ( t 3  + t') + t 5 (  1 - t")(  1 - t') 

(q4)2=(1-t5)(r15-t14)+(q2)2rJ 

(45 )2 t4=(1 - t4 )2 (1+r)2 t12+( i  - t 4 ) ( t 3 + t 4 ) ( t 1 1 - t 1 2 )  

( q 6 ) 2 = ( 1  -t')2(i - t 5 ) 2 t 6 + ( i - f 4 ) ( i - r 5 ) ( t 1 0 - t 1 2 )  

( ~ ~ ) ~ = p ~ ( i  - t 5 ) 2 - p ~ ( 1 - t 5 ) + ( i - t 3 ) ( i - r 4 ) ( i  - t 5 ) ( t 5 - t 1 4 ) - ( q 5 ) 2 ( 1 - t 4 ) ( i - t 5 )  

(q8 l2=( i  - t5)(t20-t17)+q:t4 

t4( q9)' = (1  - t4)( t 3  + t')( tl' - ? I 3 )  + t6q: 

(q10)2=(1  -t')(1 - t 5 ) ( t 1 5 - t 1 3 ) + r 6 ( q 3 ) 2 + ( q 2 ) 2 ( 1 - r ' ) ( t 3 + t 4 ) - ( q 9 ) 2 ( i - r 5 )  

(q11)2t4=p2(1 - t4)2(r3+t4)2+plt11+ t6q:-t13pl-(p2)2(i - t 4 ) ( t 3 +  t') 

- ( 1  - r')'( t3+ t4)2( 1 - t') - t"( 1 - t')( 1 - t5) 

+(ql )2( i - t ' ) ( t3+r4)-q: ( i  - t 5 )  

- 
0 0 0 0  t 1 0  

0 0 0 1 ~  4 4  

0 t7 45 PI 4 7  

0 0 t 6  45 46 

- t 1 0  q4 46 q7 ( 1  - t 2 ) ( 1  - t3) (1  - t4)(i - t 5  

- ?25/2 0 0 0 0 0 

48 0 0 0 0 -  
0 0 0 49 910 

P2 41 1 412 
t17/2 0 -  

48 

?17/2 

0 0 -  ?13/2 

49 411 €73 q 1 3  
5 

410 qI2 413 n ( 1 - t " )  - m = l  

- t 2 S 1 2  
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( q 1 2 ) 2 = p 2 ( i  - t4)*(1 - t 5 ) ’ + p l q : + ( i  - t3)( i  - t 4 ) ( i  - rS)(t1’- 

- p ; ( ~  - t 5 ) ( 1  - t4) - ql,(l - t 5 )  

( q I 3 ) * = p 3 ( i  - t 5 ) * + ( i - t 2 ) ( i - t 3 ) ( i  - t 4 ) ( i  - t S ) ( t 5 - t 1 ’ )  

-p:( i - t5)-qi( i  - t 3 ) ( i - t 4 ) ( i - t 5 ) - q : l ( i - t 4 ) ( i -  r’). 

Thus all of the unknown parameters have been expressed in terms of t, e.g. we obtain 
the explicit form of the BGR for spin 3. 
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